Files
navigate/test/model/features/test_autofocus.py
2025-12-04 16:07:30 +08:00

135 lines
5.4 KiB
Python

# Copyright (c) 2021-2025 The University of Texas Southwestern Medical Center.
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted for academic and research use only (subject to the
# limitations in the disclaimer below) provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# Standard library imports
import unittest
# Third party imports
import numpy as np
# Local imports
from navigate.model.features.autofocus import power_tent
from navigate.model.features.autofocus import Autofocus
from test.model.dummy import DummyModel
class TestPowerTentFunction(unittest.TestCase):
def test_power_tent(self):
# Test with known parameters and expected result
x = 2.0
x_offset = 1.0
y_offset = 0.0
amplitude = 2.0
sigma = 0.5
alpha = 2.0
# Calculate the expected result manually
expected_result = y_offset + amplitude * (
1 - np.abs(sigma * (x - x_offset)) ** alpha
)
# Call the function and check if the result is close to the expected result
result = power_tent(x, x_offset, y_offset, amplitude, sigma, alpha)
self.assertAlmostEqual(result, expected_result, places=6)
def test_power_tent_boundary_cases(self):
# Test some boundary cases
x_offset = 0.0
y_offset = 0.0
amplitude = 1.0
sigma = 1.0
alpha = 1.0
# Test at x = x_offset, should be y_offset + amplitude
result = power_tent(x_offset, x_offset, y_offset, amplitude, sigma, alpha)
self.assertAlmostEqual(result, y_offset + amplitude, places=6)
# Test at x = x_offset + 1, should be y_offset
result = power_tent(x_offset + 1, x_offset, y_offset, amplitude, sigma, alpha)
self.assertAlmostEqual(result, y_offset, places=6)
class TestAutofocusClass(unittest.TestCase):
def setUp(self):
# Initialize an instance of the Autofocus class for testing
model = DummyModel()
model.active_microscope_name = "Mesoscale"
self.autofocus = Autofocus(model=model, device="stage", device_ref="f")
def test_get_autofocus_frame_num(self):
# Test the get_autofocus_frame_num method
settings = {
"coarse_selected": True,
"coarse_range": 8.0,
"coarse_step_size": 2.0,
"fine_selected": True,
"fine_range": 5.0,
"fine_step_size": 1.0,
}
self.autofocus.model.configuration = {
"experiment": {
"AutoFocusParameters": {"Mesoscale": {"stage": {"f": settings}}}
}
}
# Both Fine and Coarse Selected
frames = self.autofocus.get_autofocus_frame_num()
self.assertEqual(frames, 11) # Expected number of frames
# Only Coarse Selected
self.autofocus.model.configuration["experiment"]["AutoFocusParameters"][
"Mesoscale"
]["stage"]["f"]["fine_selected"] = False
self.autofocus.model.configuration["experiment"]["AutoFocusParameters"][
"Mesoscale"
]["stage"]["f"]["coarse_selected"] = True
frames = self.autofocus.get_autofocus_frame_num()
self.assertEqual(frames, 5) # Expected number of frames
# Only Fine Selected
self.autofocus.model.configuration["experiment"]["AutoFocusParameters"][
"Mesoscale"
]["stage"]["f"]["fine_selected"] = True
self.autofocus.model.configuration["experiment"]["AutoFocusParameters"][
"Mesoscale"
]["stage"]["f"]["coarse_selected"] = False
frames = self.autofocus.get_autofocus_frame_num()
self.assertEqual(frames, 6) # Expected number of frames
def test_get_steps(self):
# Test the get_steps method
steps, pos_offset = self.autofocus.get_steps(10.0, 2.0)
self.assertEqual(steps, 6) # Expected number of steps
self.assertEqual(pos_offset, 8.0) # Expected position offset
if __name__ == "__main__":
unittest.main()