Files
navigate/test/model/data_sources/test_tiff_data_source.py
2025-12-04 16:07:30 +08:00

109 lines
3.5 KiB
Python

import os
import pytest
from navigate.tools.file_functions import delete_folder
@pytest.mark.parametrize("is_ome", [True, False])
@pytest.mark.parametrize("multiposition", [True, False])
@pytest.mark.parametrize("per_stack", [True, False])
@pytest.mark.parametrize("z_stack", [True, False])
@pytest.mark.parametrize("stop_early", [True, False])
def test_tiff_write_read(is_ome, multiposition, per_stack, z_stack, stop_early):
import numpy as np
from test.model.dummy import DummyModel
from navigate.model.data_sources.tiff_data_source import TiffDataSource
print(
f"Conditions are is_ome: {is_ome} multiposition: {multiposition} "
f"per_stack: {per_stack} z_stack: {z_stack} stop_early: {stop_early}"
)
# Set up model with a random number of z-steps to modulate the shape
model = DummyModel()
z_steps = np.random.randint(1, 3)
timepoints = np.random.randint(1, 3)
model.configuration["experiment"]["MicroscopeState"]["image_mode"] = (
"z-stack" if z_stack else "single"
)
model.configuration["experiment"]["MicroscopeState"]["number_z_steps"] = z_steps
model.configuration["experiment"]["MicroscopeState"][
"is_multiposition"
] = multiposition
model.configuration["experiment"]["MicroscopeState"]["timepoints"] = timepoints
if per_stack:
model.configuration["experiment"]["MicroscopeState"][
"stack_cycling_mode"
] == "per_stack"
else:
model.configuration["experiment"]["MicroscopeState"][
"stack_cycling_mode"
] == "per_slice"
if not os.path.exists("test_save_dir"):
os.mkdir("test_save_dir")
# Establish a TIFF data source
if is_ome:
fn = "./test_save_dir/test.ome.tif"
else:
fn = "./test_save_dir/test.tif"
ds = TiffDataSource(fn)
ds.set_metadata_from_configuration_experiment(model.configuration)
# Populate one image per channel per timepoint per position
n_images = ds.shape_c * ds.shape_z * ds.shape_t * ds.positions
data = (np.random.rand(n_images, ds.shape_y, ds.shape_x) * 2**16).astype(
np.uint16
)
file_names_raw = []
for i in range(n_images):
ds.write(data[i, ...].squeeze())
file_names_raw.extend(ds.file_name)
if stop_early and np.random.rand() > 0.5:
break
ds.close()
# Cannot use list(set()) trick here because ordering is important
file_names = []
for fn in file_names_raw:
if fn not in file_names:
file_names.append(fn)
# print(file_names)
try:
# For each file...
for i, fn in enumerate(file_names):
ds2 = TiffDataSource(fn, "r")
# Make sure XYZ size is correct (and C and T are each of size 1)
assert (
(ds2.shape_x == ds.shape_x)
and (ds2.shape_y == ds.shape_y)
and (ds2.shape_c == 1)
and (ds2.shape_t == 1)
and (ds2.shape_z == ds.shape_z)
)
# Make sure the data copied properly
np.testing.assert_equal(
ds2.data, data[i * ds.shape_z : (i + 1) * ds.shape_z, ...].squeeze()
)
ds2.close()
except IndexError as e:
if stop_early:
# This file was not written
pass
else:
raise e
except AssertionError as e:
if stop_early:
# This file has an underfilled axes
pass
else:
raise e
except Exception as e:
raise e
finally:
delete_folder("test_save_dir")