feat: init

This commit is contained in:
2025-12-04 16:07:30 +08:00
commit 262583a57f
681 changed files with 117578 additions and 0 deletions

View File

View File

@@ -0,0 +1,112 @@
# Copyright (c) 2021-2025 The University of Texas Southwestern Medical Center.
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted for academic and research use only (subject to the
# limitations in the disclaimer below) provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
def im_circ(r=1, N=128):
X, Y = np.meshgrid(range(-N // 2, N // 2), range(-N // 2, N // 2))
return (X * X + Y * Y) < r * r
def test_has_tissue():
from navigate.model.analysis.boundary_detect import has_tissue
for _ in range(100):
N = 2 ** np.random.randint(5, 9)
r = np.random.randint(math.ceil(0.2 * N), int(0.4 * N))
ds = np.random.randint(1, 6)
print(N, r, ds)
im = im_circ(r, N) * 1001
mu, sig = 100 * np.random.rand() + 1, 10 * np.random.rand() + 1
print(mu, sig)
offsets = [None, np.ones((N, N)) * mu]
variances = [None, np.ones((N, N)) * sig]
for off, var in zip(offsets, variances):
assert has_tissue(im, 0, 0, N, off, var) and not has_tissue(
im, 0, 0, N // 2 - r, off, var
)
def test_find_tissue_boundary_2d():
from skimage.transform import downscale_local_mean
from navigate.model.analysis.boundary_detect import find_tissue_boundary_2d
for _ in range(100):
N = 2 ** np.random.randint(5, 9)
r = np.random.randint(1, int(0.4 * N))
ds = np.random.randint(1, 6)
print(N, r, ds)
im = im_circ(r, N)
b = find_tissue_boundary_2d(im, ds)
b = np.vstack([x for x in b if x is not None])
idx_x, idx_y = np.where(downscale_local_mean(im, (ds, ds)))
iixy = (np.unique(idx_x)[:, None] == idx_x[None, :]) * idx_y
low, high = idx_y[np.argmax(iixy != 0, 1)], np.max(iixy, 1)
np.testing.assert_equal(b, np.vstack([low, high]).T)
def test_binary_detect():
from navigate.model.analysis.boundary_detect import (
find_tissue_boundary_2d,
binary_detect,
)
for _ in range(100):
N = 2 ** np.random.randint(5, 9)
r = np.random.randint(1, int(0.4 * N))
ds = np.random.randint(1, 6)
print(N, r, ds)
im = im_circ(r, N)
b = find_tissue_boundary_2d(im, ds)
assert binary_detect(im * 1001, b, ds) == b
def test_map_boundary():
from navigate.model.analysis.boundary_detect import map_boundary
assert map_boundary([[1, 2]]) == [(0, 1), (0, 2)]
assert map_boundary([None, [1, 2]]) == [(1, 1), (1, 2)]
assert map_boundary([None, [1, 2], None]) == [(1, 1), (1, 2)]

View File

@@ -0,0 +1,56 @@
import numpy as np
import pytest
@pytest.mark.skip("volatile")
def test_compute_scmos_offset_and_variance_map():
from navigate.model.analysis.camera import compute_scmos_offset_and_variance_map
mu, sig = 100 * np.random.rand() + 1, 100 * np.random.rand() + 1
im = sig * np.random.randn(256, 256, 256) + mu
offset, variance = compute_scmos_offset_and_variance_map(im)
print(mu, sig)
# TODO: 1 is a bit high?
np.testing.assert_allclose(offset, mu, rtol=1)
np.testing.assert_allclose(variance, sig * sig, rtol=1)
@pytest.mark.parametrize("local", [True, False])
def test_compute_flatfield_map(local):
from navigate.model.analysis.camera import compute_flatfield_map
image = np.ones((256, 256))
offset = np.zeros((256, 256))
ffmap = compute_flatfield_map(image, offset, local)
np.testing.assert_allclose(ffmap, 0.5)
def test_compute_noise_sigma():
from navigate.model.analysis.camera import compute_noise_sigma
Fn = np.random.rand()
qe = np.random.rand()
S = np.random.rand(256, 256)
Ib = np.random.rand()
Nr = np.random.rand()
M = np.random.rand()
sigma = compute_noise_sigma(Fn=Fn, qe=qe, S=S, Ib=Ib, Nr=Nr, M=M)
sigma_true = np.sqrt(Fn * Fn * qe * (S + Ib) + (Nr / M) ** 2)
np.testing.assert_allclose(sigma, sigma_true)
def test_compute_signal_to_noise():
from navigate.model.analysis.camera import compute_signal_to_noise
A = np.random.rand() * 100 + 10
image = A * np.ones((256, 256))
offset = np.zeros((256, 256))
variance = 3 * A * A * np.ones((256, 256))
snr = compute_signal_to_noise(image, offset, variance)
np.testing.assert_allclose(snr, 0.5, rtol=0.2)