Files
CLIProxyAPI/internal/translator/openai/gemini/openai_gemini_request.go
hkfires 716aa71f6e fix(thinking): centralize reasoning_effort mapping
Move OpenAI `reasoning_effort` -> Gemini `thinkingConfig` budget logic into
shared helpers used by Gemini, Gemini CLI, and antigravity translators.

Normalize Claude thinking handling by preferring positive budgets, applying
budget token normalization, and gating by model support.

Always convert Gemini `thinkingBudget` back to OpenAI `reasoning_effort` to
support allowCompat models, and update tests for normalization behavior.
2025-12-15 09:16:14 +08:00

452 lines
15 KiB
Go

// Package gemini provides request translation functionality for Gemini to OpenAI API.
// It handles parsing and transforming Gemini API requests into OpenAI Chat Completions API format,
// extracting model information, generation config, message contents, and tool declarations.
// The package performs JSON data transformation to ensure compatibility
// between Gemini API format and OpenAI API's expected format.
package gemini
import (
"bytes"
"crypto/rand"
"encoding/json"
"fmt"
"math/big"
"strings"
"github.com/router-for-me/CLIProxyAPI/v6/internal/util"
"github.com/tidwall/gjson"
"github.com/tidwall/sjson"
)
// ConvertGeminiRequestToOpenAI parses and transforms a Gemini API request into OpenAI Chat Completions API format.
// It extracts the model name, generation config, message contents, and tool declarations
// from the raw JSON request and returns them in the format expected by the OpenAI API.
func ConvertGeminiRequestToOpenAI(modelName string, inputRawJSON []byte, stream bool) []byte {
rawJSON := bytes.Clone(inputRawJSON)
// Base OpenAI Chat Completions API template
out := `{"model":"","messages":[]}`
root := gjson.ParseBytes(rawJSON)
// Helper for generating tool call IDs in the form: call_<alphanum>
genToolCallID := func() string {
const letters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
var b strings.Builder
// 24 chars random suffix
for i := 0; i < 24; i++ {
n, _ := rand.Int(rand.Reader, big.NewInt(int64(len(letters))))
b.WriteByte(letters[n.Int64()])
}
return "call_" + b.String()
}
// Model mapping
out, _ = sjson.Set(out, "model", modelName)
// Generation config mapping
if genConfig := root.Get("generationConfig"); genConfig.Exists() {
// Temperature
if temp := genConfig.Get("temperature"); temp.Exists() {
out, _ = sjson.Set(out, "temperature", temp.Float())
}
// Max tokens
if maxTokens := genConfig.Get("maxOutputTokens"); maxTokens.Exists() {
out, _ = sjson.Set(out, "max_tokens", maxTokens.Int())
}
// Top P
if topP := genConfig.Get("topP"); topP.Exists() {
out, _ = sjson.Set(out, "top_p", topP.Float())
}
// Top K (OpenAI doesn't have direct equivalent, but we can map it)
if topK := genConfig.Get("topK"); topK.Exists() {
// Store as custom parameter for potential use
out, _ = sjson.Set(out, "top_k", topK.Int())
}
// Stop sequences
if stopSequences := genConfig.Get("stopSequences"); stopSequences.Exists() && stopSequences.IsArray() {
var stops []string
stopSequences.ForEach(func(_, value gjson.Result) bool {
stops = append(stops, value.String())
return true
})
if len(stops) > 0 {
out, _ = sjson.Set(out, "stop", stops)
}
}
// Convert thinkingBudget to reasoning_effort
// Always perform conversion to support allowCompat models that may not be in registry
if thinkingConfig := genConfig.Get("thinkingConfig"); thinkingConfig.Exists() && thinkingConfig.IsObject() {
if thinkingBudget := thinkingConfig.Get("thinkingBudget"); thinkingBudget.Exists() {
budget := int(thinkingBudget.Int())
if effort, ok := util.OpenAIThinkingBudgetToEffort(modelName, budget); ok && effort != "" {
out, _ = sjson.Set(out, "reasoning_effort", effort)
}
}
}
}
// Stream parameter
out, _ = sjson.Set(out, "stream", stream)
// Process contents (Gemini messages) -> OpenAI messages
var openAIMessages []interface{}
var toolCallIDs []string // Track tool call IDs for matching with tool results
// System instruction -> OpenAI system message
// Gemini may provide `systemInstruction` or `system_instruction`; support both keys.
systemInstruction := root.Get("systemInstruction")
if !systemInstruction.Exists() {
systemInstruction = root.Get("system_instruction")
}
if systemInstruction.Exists() {
parts := systemInstruction.Get("parts")
msg := map[string]interface{}{
"role": "system",
"content": []interface{}{},
}
var aggregatedParts []interface{}
if parts.Exists() && parts.IsArray() {
parts.ForEach(func(_, part gjson.Result) bool {
// Handle text parts
if text := part.Get("text"); text.Exists() {
formattedText := text.String()
aggregatedParts = append(aggregatedParts, map[string]interface{}{
"type": "text",
"text": formattedText,
})
}
// Handle inline data (e.g., images)
if inlineData := part.Get("inlineData"); inlineData.Exists() {
mimeType := inlineData.Get("mimeType").String()
if mimeType == "" {
mimeType = "application/octet-stream"
}
data := inlineData.Get("data").String()
imageURL := fmt.Sprintf("data:%s;base64,%s", mimeType, data)
aggregatedParts = append(aggregatedParts, map[string]interface{}{
"type": "image_url",
"image_url": map[string]interface{}{
"url": imageURL,
},
})
}
return true
})
}
if len(aggregatedParts) > 0 {
msg["content"] = aggregatedParts
openAIMessages = append(openAIMessages, msg)
}
}
if contents := root.Get("contents"); contents.Exists() && contents.IsArray() {
contents.ForEach(func(_, content gjson.Result) bool {
role := content.Get("role").String()
parts := content.Get("parts")
// Convert role: model -> assistant
if role == "model" {
role = "assistant"
}
// Create OpenAI message
msg := map[string]interface{}{
"role": role,
"content": "",
}
var textBuilder strings.Builder
var aggregatedParts []interface{}
onlyTextContent := true
var toolCalls []interface{}
if parts.Exists() && parts.IsArray() {
parts.ForEach(func(_, part gjson.Result) bool {
// Handle text parts
if text := part.Get("text"); text.Exists() {
formattedText := text.String()
textBuilder.WriteString(formattedText)
aggregatedParts = append(aggregatedParts, map[string]interface{}{
"type": "text",
"text": formattedText,
})
}
// Handle inline data (e.g., images)
if inlineData := part.Get("inlineData"); inlineData.Exists() {
onlyTextContent = false
mimeType := inlineData.Get("mimeType").String()
if mimeType == "" {
mimeType = "application/octet-stream"
}
data := inlineData.Get("data").String()
imageURL := fmt.Sprintf("data:%s;base64,%s", mimeType, data)
aggregatedParts = append(aggregatedParts, map[string]interface{}{
"type": "image_url",
"image_url": map[string]interface{}{
"url": imageURL,
},
})
}
// Handle function calls (Gemini) -> tool calls (OpenAI)
if functionCall := part.Get("functionCall"); functionCall.Exists() {
toolCallID := genToolCallID()
toolCallIDs = append(toolCallIDs, toolCallID)
toolCall := map[string]interface{}{
"id": toolCallID,
"type": "function",
"function": map[string]interface{}{
"name": functionCall.Get("name").String(),
},
}
// Convert args to arguments JSON string
if args := functionCall.Get("args"); args.Exists() {
argsJSON, _ := json.Marshal(args.Value())
toolCall["function"].(map[string]interface{})["arguments"] = string(argsJSON)
} else {
toolCall["function"].(map[string]interface{})["arguments"] = "{}"
}
toolCalls = append(toolCalls, toolCall)
}
// Handle function responses (Gemini) -> tool role messages (OpenAI)
if functionResponse := part.Get("functionResponse"); functionResponse.Exists() {
// Create tool message for function response
toolMsg := map[string]interface{}{
"role": "tool",
"tool_call_id": "", // Will be set based on context
"content": "",
}
// Convert response.content to JSON string
if response := functionResponse.Get("response"); response.Exists() {
if content = response.Get("content"); content.Exists() {
// Use the content field from the response
contentJSON, _ := json.Marshal(content.Value())
toolMsg["content"] = string(contentJSON)
} else {
// Fallback to entire response
responseJSON, _ := json.Marshal(response.Value())
toolMsg["content"] = string(responseJSON)
}
}
// Try to match with previous tool call ID
_ = functionResponse.Get("name").String() // functionName not used for now
if len(toolCallIDs) > 0 {
// Use the last tool call ID (simple matching by function name)
// In a real implementation, you might want more sophisticated matching
toolMsg["tool_call_id"] = toolCallIDs[len(toolCallIDs)-1]
} else {
// Generate a tool call ID if none available
toolMsg["tool_call_id"] = genToolCallID()
}
openAIMessages = append(openAIMessages, toolMsg)
}
return true
})
}
// Set content
if len(aggregatedParts) > 0 {
if onlyTextContent {
msg["content"] = textBuilder.String()
} else {
msg["content"] = aggregatedParts
}
}
// Set tool calls if any
if len(toolCalls) > 0 {
msg["tool_calls"] = toolCalls
}
openAIMessages = append(openAIMessages, msg)
// switch role {
// case "user", "model":
// // Convert role: model -> assistant
// if role == "model" {
// role = "assistant"
// }
//
// // Create OpenAI message
// msg := map[string]interface{}{
// "role": role,
// "content": "",
// }
//
// var contentParts []string
// var toolCalls []interface{}
//
// if parts.Exists() && parts.IsArray() {
// parts.ForEach(func(_, part gjson.Result) bool {
// // Handle text parts
// if text := part.Get("text"); text.Exists() {
// contentParts = append(contentParts, text.String())
// }
//
// // Handle function calls (Gemini) -> tool calls (OpenAI)
// if functionCall := part.Get("functionCall"); functionCall.Exists() {
// toolCallID := genToolCallID()
// toolCallIDs = append(toolCallIDs, toolCallID)
//
// toolCall := map[string]interface{}{
// "id": toolCallID,
// "type": "function",
// "function": map[string]interface{}{
// "name": functionCall.Get("name").String(),
// },
// }
//
// // Convert args to arguments JSON string
// if args := functionCall.Get("args"); args.Exists() {
// argsJSON, _ := json.Marshal(args.Value())
// toolCall["function"].(map[string]interface{})["arguments"] = string(argsJSON)
// } else {
// toolCall["function"].(map[string]interface{})["arguments"] = "{}"
// }
//
// toolCalls = append(toolCalls, toolCall)
// }
//
// return true
// })
// }
//
// // Set content
// if len(contentParts) > 0 {
// msg["content"] = strings.Join(contentParts, "")
// }
//
// // Set tool calls if any
// if len(toolCalls) > 0 {
// msg["tool_calls"] = toolCalls
// }
//
// openAIMessages = append(openAIMessages, msg)
//
// case "function":
// // Handle Gemini function role -> OpenAI tool role
// if parts.Exists() && parts.IsArray() {
// parts.ForEach(func(_, part gjson.Result) bool {
// // Handle function responses (Gemini) -> tool role messages (OpenAI)
// if functionResponse := part.Get("functionResponse"); functionResponse.Exists() {
// // Create tool message for function response
// toolMsg := map[string]interface{}{
// "role": "tool",
// "tool_call_id": "", // Will be set based on context
// "content": "",
// }
//
// // Convert response.content to JSON string
// if response := functionResponse.Get("response"); response.Exists() {
// if content = response.Get("content"); content.Exists() {
// // Use the content field from the response
// contentJSON, _ := json.Marshal(content.Value())
// toolMsg["content"] = string(contentJSON)
// } else {
// // Fallback to entire response
// responseJSON, _ := json.Marshal(response.Value())
// toolMsg["content"] = string(responseJSON)
// }
// }
//
// // Try to match with previous tool call ID
// _ = functionResponse.Get("name").String() // functionName not used for now
// if len(toolCallIDs) > 0 {
// // Use the last tool call ID (simple matching by function name)
// // In a real implementation, you might want more sophisticated matching
// toolMsg["tool_call_id"] = toolCallIDs[len(toolCallIDs)-1]
// } else {
// // Generate a tool call ID if none available
// toolMsg["tool_call_id"] = genToolCallID()
// }
//
// openAIMessages = append(openAIMessages, toolMsg)
// }
//
// return true
// })
// }
// }
return true
})
}
// Set messages
if len(openAIMessages) > 0 {
messagesJSON, _ := json.Marshal(openAIMessages)
out, _ = sjson.SetRaw(out, "messages", string(messagesJSON))
}
// Tools mapping: Gemini tools -> OpenAI tools
if tools := root.Get("tools"); tools.Exists() && tools.IsArray() {
var openAITools []interface{}
tools.ForEach(func(_, tool gjson.Result) bool {
if functionDeclarations := tool.Get("functionDeclarations"); functionDeclarations.Exists() && functionDeclarations.IsArray() {
functionDeclarations.ForEach(func(_, funcDecl gjson.Result) bool {
openAITool := map[string]interface{}{
"type": "function",
"function": map[string]interface{}{
"name": funcDecl.Get("name").String(),
"description": funcDecl.Get("description").String(),
},
}
// Convert parameters schema
if parameters := funcDecl.Get("parameters"); parameters.Exists() {
openAITool["function"].(map[string]interface{})["parameters"] = parameters.Value()
} else if parameters = funcDecl.Get("parametersJsonSchema"); parameters.Exists() {
openAITool["function"].(map[string]interface{})["parameters"] = parameters.Value()
}
openAITools = append(openAITools, openAITool)
return true
})
}
return true
})
if len(openAITools) > 0 {
toolsJSON, _ := json.Marshal(openAITools)
out, _ = sjson.SetRaw(out, "tools", string(toolsJSON))
}
}
// Tool choice mapping (Gemini doesn't have direct equivalent, but we can handle it)
if toolConfig := root.Get("toolConfig"); toolConfig.Exists() {
if functionCallingConfig := toolConfig.Get("functionCallingConfig"); functionCallingConfig.Exists() {
mode := functionCallingConfig.Get("mode").String()
switch mode {
case "NONE":
out, _ = sjson.Set(out, "tool_choice", "none")
case "AUTO":
out, _ = sjson.Set(out, "tool_choice", "auto")
case "ANY":
out, _ = sjson.Set(out, "tool_choice", "required")
}
}
}
return []byte(out)
}