rebuild branch

This commit is contained in:
Luis Pater
2025-09-25 10:32:48 +08:00
parent 3f69254f43
commit f5dc380b63
214 changed files with 39377 additions and 0 deletions

View File

@@ -0,0 +1,320 @@
// Package openai provides request translation functionality for OpenAI to Claude Code API compatibility.
// It handles parsing and transforming OpenAI Chat Completions API requests into Claude Code API format,
// extracting model information, system instructions, message contents, and tool declarations.
// The package performs JSON data transformation to ensure compatibility
// between OpenAI API format and Claude Code API's expected format.
package chat_completions
import (
"bytes"
"crypto/rand"
"encoding/json"
"math/big"
"strings"
"github.com/tidwall/gjson"
"github.com/tidwall/sjson"
)
// ConvertOpenAIRequestToClaude parses and transforms an OpenAI Chat Completions API request into Claude Code API format.
// It extracts the model name, system instruction, message contents, and tool declarations
// from the raw JSON request and returns them in the format expected by the Claude Code API.
// The function performs comprehensive transformation including:
// 1. Model name mapping and parameter extraction (max_tokens, temperature, top_p, etc.)
// 2. Message content conversion from OpenAI to Claude Code format
// 3. Tool call and tool result handling with proper ID mapping
// 4. Image data conversion from OpenAI data URLs to Claude Code base64 format
// 5. Stop sequence and streaming configuration handling
//
// Parameters:
// - modelName: The name of the model to use for the request
// - rawJSON: The raw JSON request data from the OpenAI API
// - stream: A boolean indicating if the request is for a streaming response
//
// Returns:
// - []byte: The transformed request data in Claude Code API format
func ConvertOpenAIRequestToClaude(modelName string, inputRawJSON []byte, stream bool) []byte {
rawJSON := bytes.Clone(inputRawJSON)
// Base Claude Code API template with default max_tokens value
out := `{"model":"","max_tokens":32000,"messages":[]}`
root := gjson.ParseBytes(rawJSON)
if v := root.Get("reasoning_effort"); v.Exists() {
out, _ = sjson.Set(out, "thinking.type", "enabled")
switch v.String() {
case "none":
out, _ = sjson.Set(out, "thinking.type", "disabled")
case "low":
out, _ = sjson.Set(out, "thinking.budget_tokens", 1024)
case "medium":
out, _ = sjson.Set(out, "thinking.budget_tokens", 8192)
case "high":
out, _ = sjson.Set(out, "thinking.budget_tokens", 24576)
}
}
// Helper for generating tool call IDs in the form: toolu_<alphanum>
// This ensures unique identifiers for tool calls in the Claude Code format
genToolCallID := func() string {
const letters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
var b strings.Builder
// 24 chars random suffix for uniqueness
for i := 0; i < 24; i++ {
n, _ := rand.Int(rand.Reader, big.NewInt(int64(len(letters))))
b.WriteByte(letters[n.Int64()])
}
return "toolu_" + b.String()
}
// Model mapping to specify which Claude Code model to use
out, _ = sjson.Set(out, "model", modelName)
// Max tokens configuration with fallback to default value
if maxTokens := root.Get("max_tokens"); maxTokens.Exists() {
out, _ = sjson.Set(out, "max_tokens", maxTokens.Int())
}
// Temperature setting for controlling response randomness
if temp := root.Get("temperature"); temp.Exists() {
out, _ = sjson.Set(out, "temperature", temp.Float())
}
// Top P setting for nucleus sampling
if topP := root.Get("top_p"); topP.Exists() {
out, _ = sjson.Set(out, "top_p", topP.Float())
}
// Stop sequences configuration for custom termination conditions
if stop := root.Get("stop"); stop.Exists() {
if stop.IsArray() {
var stopSequences []string
stop.ForEach(func(_, value gjson.Result) bool {
stopSequences = append(stopSequences, value.String())
return true
})
if len(stopSequences) > 0 {
out, _ = sjson.Set(out, "stop_sequences", stopSequences)
}
} else {
out, _ = sjson.Set(out, "stop_sequences", []string{stop.String()})
}
}
// Stream configuration to enable or disable streaming responses
out, _ = sjson.Set(out, "stream", stream)
// Process messages and transform them to Claude Code format
var anthropicMessages []interface{}
var toolCallIDs []string // Track tool call IDs for matching with tool results
if messages := root.Get("messages"); messages.Exists() && messages.IsArray() {
messages.ForEach(func(_, message gjson.Result) bool {
role := message.Get("role").String()
contentResult := message.Get("content")
switch role {
case "system", "user", "assistant":
// Create Claude Code message with appropriate role mapping
if role == "system" {
role = "user"
}
msg := map[string]interface{}{
"role": role,
"content": []interface{}{},
}
// Handle content based on its type (string or array)
if contentResult.Exists() && contentResult.Type == gjson.String && contentResult.String() != "" {
// Simple text content conversion
msg["content"] = []interface{}{
map[string]interface{}{
"type": "text",
"text": contentResult.String(),
},
}
} else if contentResult.Exists() && contentResult.IsArray() {
// Array of content parts processing
var contentParts []interface{}
contentResult.ForEach(func(_, part gjson.Result) bool {
partType := part.Get("type").String()
switch partType {
case "text":
// Text part conversion
contentParts = append(contentParts, map[string]interface{}{
"type": "text",
"text": part.Get("text").String(),
})
case "image_url":
// Convert OpenAI image format to Claude Code format
imageURL := part.Get("image_url.url").String()
if strings.HasPrefix(imageURL, "data:") {
// Extract base64 data and media type from data URL
parts := strings.Split(imageURL, ",")
if len(parts) == 2 {
mediaTypePart := strings.Split(parts[0], ";")[0]
mediaType := strings.TrimPrefix(mediaTypePart, "data:")
data := parts[1]
contentParts = append(contentParts, map[string]interface{}{
"type": "image",
"source": map[string]interface{}{
"type": "base64",
"media_type": mediaType,
"data": data,
},
})
}
}
}
return true
})
if len(contentParts) > 0 {
msg["content"] = contentParts
}
} else {
// Initialize empty content array for tool calls
msg["content"] = []interface{}{}
}
// Handle tool calls (for assistant messages)
if toolCalls := message.Get("tool_calls"); toolCalls.Exists() && toolCalls.IsArray() && role == "assistant" {
var contentParts []interface{}
// Add existing text content if any
if existingContent, ok := msg["content"].([]interface{}); ok {
contentParts = existingContent
}
toolCalls.ForEach(func(_, toolCall gjson.Result) bool {
if toolCall.Get("type").String() == "function" {
toolCallID := toolCall.Get("id").String()
if toolCallID == "" {
toolCallID = genToolCallID()
}
toolCallIDs = append(toolCallIDs, toolCallID)
function := toolCall.Get("function")
toolUse := map[string]interface{}{
"type": "tool_use",
"id": toolCallID,
"name": function.Get("name").String(),
}
// Parse arguments for the tool call
if args := function.Get("arguments"); args.Exists() {
argsStr := args.String()
if argsStr != "" {
var argsMap map[string]interface{}
if err := json.Unmarshal([]byte(argsStr), &argsMap); err == nil {
toolUse["input"] = argsMap
} else {
toolUse["input"] = map[string]interface{}{}
}
} else {
toolUse["input"] = map[string]interface{}{}
}
} else {
toolUse["input"] = map[string]interface{}{}
}
contentParts = append(contentParts, toolUse)
}
return true
})
msg["content"] = contentParts
}
anthropicMessages = append(anthropicMessages, msg)
case "tool":
// Handle tool result messages conversion
toolCallID := message.Get("tool_call_id").String()
content := message.Get("content").String()
// Create tool result message in Claude Code format
msg := map[string]interface{}{
"role": "user",
"content": []interface{}{
map[string]interface{}{
"type": "tool_result",
"tool_use_id": toolCallID,
"content": content,
},
},
}
anthropicMessages = append(anthropicMessages, msg)
}
return true
})
}
// Set messages in the output template
if len(anthropicMessages) > 0 {
messagesJSON, _ := json.Marshal(anthropicMessages)
out, _ = sjson.SetRaw(out, "messages", string(messagesJSON))
}
// Tools mapping: OpenAI tools -> Claude Code tools
if tools := root.Get("tools"); tools.Exists() && tools.IsArray() && len(tools.Array()) > 0 {
var anthropicTools []interface{}
tools.ForEach(func(_, tool gjson.Result) bool {
if tool.Get("type").String() == "function" {
function := tool.Get("function")
anthropicTool := map[string]interface{}{
"name": function.Get("name").String(),
"description": function.Get("description").String(),
}
// Convert parameters schema for the tool
if parameters := function.Get("parameters"); parameters.Exists() {
anthropicTool["input_schema"] = parameters.Value()
} else if parameters = function.Get("parametersJsonSchema"); parameters.Exists() {
anthropicTool["input_schema"] = parameters.Value()
}
anthropicTools = append(anthropicTools, anthropicTool)
}
return true
})
if len(anthropicTools) > 0 {
toolsJSON, _ := json.Marshal(anthropicTools)
out, _ = sjson.SetRaw(out, "tools", string(toolsJSON))
}
}
// Tool choice mapping from OpenAI format to Claude Code format
if toolChoice := root.Get("tool_choice"); toolChoice.Exists() {
switch toolChoice.Type {
case gjson.String:
choice := toolChoice.String()
switch choice {
case "none":
// Don't set tool_choice, Claude Code will not use tools
case "auto":
out, _ = sjson.Set(out, "tool_choice", map[string]interface{}{"type": "auto"})
case "required":
out, _ = sjson.Set(out, "tool_choice", map[string]interface{}{"type": "any"})
}
case gjson.JSON:
// Specific tool choice mapping
if toolChoice.Get("type").String() == "function" {
functionName := toolChoice.Get("function.name").String()
out, _ = sjson.Set(out, "tool_choice", map[string]interface{}{
"type": "tool",
"name": functionName,
})
}
default:
}
}
return []byte(out)
}

View File

@@ -0,0 +1,458 @@
// Package openai provides response translation functionality for Claude Code to OpenAI API compatibility.
// This package handles the conversion of Claude Code API responses into OpenAI Chat Completions-compatible
// JSON format, transforming streaming events and non-streaming responses into the format
// expected by OpenAI API clients. It supports both streaming and non-streaming modes,
// handling text content, tool calls, reasoning content, and usage metadata appropriately.
package chat_completions
import (
"bytes"
"context"
"encoding/json"
"strings"
"time"
"github.com/tidwall/gjson"
"github.com/tidwall/sjson"
)
var (
dataTag = []byte("data:")
)
// ConvertAnthropicResponseToOpenAIParams holds parameters for response conversion
type ConvertAnthropicResponseToOpenAIParams struct {
CreatedAt int64
ResponseID string
FinishReason string
// Tool calls accumulator for streaming
ToolCallsAccumulator map[int]*ToolCallAccumulator
}
// ToolCallAccumulator holds the state for accumulating tool call data
type ToolCallAccumulator struct {
ID string
Name string
Arguments strings.Builder
}
// ConvertClaudeResponseToOpenAI converts Claude Code streaming response format to OpenAI Chat Completions format.
// This function processes various Claude Code event types and transforms them into OpenAI-compatible JSON responses.
// It handles text content, tool calls, reasoning content, and usage metadata, outputting responses that match
// the OpenAI API format. The function supports incremental updates for streaming responses.
//
// Parameters:
// - ctx: The context for the request, used for cancellation and timeout handling
// - modelName: The name of the model being used for the response
// - rawJSON: The raw JSON response from the Claude Code API
// - param: A pointer to a parameter object for maintaining state between calls
//
// Returns:
// - []string: A slice of strings, each containing an OpenAI-compatible JSON response
func ConvertClaudeResponseToOpenAI(_ context.Context, modelName string, originalRequestRawJSON, requestRawJSON, rawJSON []byte, param *any) []string {
if *param == nil {
*param = &ConvertAnthropicResponseToOpenAIParams{
CreatedAt: 0,
ResponseID: "",
FinishReason: "",
}
}
if !bytes.HasPrefix(rawJSON, dataTag) {
return []string{}
}
rawJSON = bytes.TrimSpace(rawJSON[5:])
root := gjson.ParseBytes(rawJSON)
eventType := root.Get("type").String()
// Base OpenAI streaming response template
template := `{"id":"","object":"chat.completion.chunk","created":0,"model":"","choices":[{"index":0,"delta":{},"finish_reason":null}]}`
// Set model
if modelName != "" {
template, _ = sjson.Set(template, "model", modelName)
}
// Set response ID and creation time
if (*param).(*ConvertAnthropicResponseToOpenAIParams).ResponseID != "" {
template, _ = sjson.Set(template, "id", (*param).(*ConvertAnthropicResponseToOpenAIParams).ResponseID)
}
if (*param).(*ConvertAnthropicResponseToOpenAIParams).CreatedAt > 0 {
template, _ = sjson.Set(template, "created", (*param).(*ConvertAnthropicResponseToOpenAIParams).CreatedAt)
}
switch eventType {
case "message_start":
// Initialize response with message metadata when a new message begins
if message := root.Get("message"); message.Exists() {
(*param).(*ConvertAnthropicResponseToOpenAIParams).ResponseID = message.Get("id").String()
(*param).(*ConvertAnthropicResponseToOpenAIParams).CreatedAt = time.Now().Unix()
template, _ = sjson.Set(template, "id", (*param).(*ConvertAnthropicResponseToOpenAIParams).ResponseID)
template, _ = sjson.Set(template, "model", modelName)
template, _ = sjson.Set(template, "created", (*param).(*ConvertAnthropicResponseToOpenAIParams).CreatedAt)
// Set initial role to assistant for the response
template, _ = sjson.Set(template, "choices.0.delta.role", "assistant")
// Initialize tool calls accumulator for tracking tool call progress
if (*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator == nil {
(*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator = make(map[int]*ToolCallAccumulator)
}
}
return []string{template}
case "content_block_start":
// Start of a content block (text, tool use, or reasoning)
if contentBlock := root.Get("content_block"); contentBlock.Exists() {
blockType := contentBlock.Get("type").String()
if blockType == "tool_use" {
// Start of tool call - initialize accumulator to track arguments
toolCallID := contentBlock.Get("id").String()
toolName := contentBlock.Get("name").String()
index := int(root.Get("index").Int())
if (*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator == nil {
(*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator = make(map[int]*ToolCallAccumulator)
}
(*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator[index] = &ToolCallAccumulator{
ID: toolCallID,
Name: toolName,
}
// Don't output anything yet - wait for complete tool call
return []string{}
}
}
return []string{}
case "content_block_delta":
// Handle content delta (text, tool use arguments, or reasoning content)
hasContent := false
if delta := root.Get("delta"); delta.Exists() {
deltaType := delta.Get("type").String()
switch deltaType {
case "text_delta":
// Text content delta - send incremental text updates
if text := delta.Get("text"); text.Exists() {
template, _ = sjson.Set(template, "choices.0.delta.content", text.String())
hasContent = true
}
case "thinking_delta":
// Accumulate reasoning/thinking content
if thinking := delta.Get("thinking"); thinking.Exists() {
template, _ = sjson.Set(template, "choices.0.delta.reasoning_content", thinking.String())
hasContent = true
}
case "input_json_delta":
// Tool use input delta - accumulate arguments for tool calls
if partialJSON := delta.Get("partial_json"); partialJSON.Exists() {
index := int(root.Get("index").Int())
if (*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator != nil {
if accumulator, exists := (*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator[index]; exists {
accumulator.Arguments.WriteString(partialJSON.String())
}
}
}
// Don't output anything yet - wait for complete tool call
return []string{}
}
}
if hasContent {
return []string{template}
} else {
return []string{}
}
case "content_block_stop":
// End of content block - output complete tool call if it's a tool_use block
index := int(root.Get("index").Int())
if (*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator != nil {
if accumulator, exists := (*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator[index]; exists {
// Build complete tool call with accumulated arguments
arguments := accumulator.Arguments.String()
if arguments == "" {
arguments = "{}"
}
toolCall := map[string]interface{}{
"index": index,
"id": accumulator.ID,
"type": "function",
"function": map[string]interface{}{
"name": accumulator.Name,
"arguments": arguments,
},
}
template, _ = sjson.Set(template, "choices.0.delta.tool_calls", []interface{}{toolCall})
// Clean up the accumulator for this index
delete((*param).(*ConvertAnthropicResponseToOpenAIParams).ToolCallsAccumulator, index)
return []string{template}
}
}
return []string{}
case "message_delta":
// Handle message-level changes including stop reason and usage
if delta := root.Get("delta"); delta.Exists() {
if stopReason := delta.Get("stop_reason"); stopReason.Exists() {
(*param).(*ConvertAnthropicResponseToOpenAIParams).FinishReason = mapAnthropicStopReasonToOpenAI(stopReason.String())
template, _ = sjson.Set(template, "choices.0.finish_reason", (*param).(*ConvertAnthropicResponseToOpenAIParams).FinishReason)
}
}
// Handle usage information for token counts
if usage := root.Get("usage"); usage.Exists() {
usageObj := map[string]interface{}{
"prompt_tokens": usage.Get("input_tokens").Int(),
"completion_tokens": usage.Get("output_tokens").Int(),
"total_tokens": usage.Get("input_tokens").Int() + usage.Get("output_tokens").Int(),
}
template, _ = sjson.Set(template, "usage", usageObj)
}
return []string{template}
case "message_stop":
// Final message event - no additional output needed
return []string{}
case "ping":
// Ping events for keeping connection alive - no output needed
return []string{}
case "error":
// Error event - format and return error response
if errorData := root.Get("error"); errorData.Exists() {
errorResponse := map[string]interface{}{
"error": map[string]interface{}{
"message": errorData.Get("message").String(),
"type": errorData.Get("type").String(),
},
}
errorJSON, _ := json.Marshal(errorResponse)
return []string{string(errorJSON)}
}
return []string{}
default:
// Unknown event type - ignore
return []string{}
}
}
// mapAnthropicStopReasonToOpenAI maps Anthropic stop reasons to OpenAI stop reasons
func mapAnthropicStopReasonToOpenAI(anthropicReason string) string {
switch anthropicReason {
case "end_turn":
return "stop"
case "tool_use":
return "tool_calls"
case "max_tokens":
return "length"
case "stop_sequence":
return "stop"
default:
return "stop"
}
}
// ConvertClaudeResponseToOpenAINonStream converts a non-streaming Claude Code response to a non-streaming OpenAI response.
// This function processes the complete Claude Code response and transforms it into a single OpenAI-compatible
// JSON response. It handles message content, tool calls, reasoning content, and usage metadata, combining all
// the information into a single response that matches the OpenAI API format.
//
// Parameters:
// - ctx: The context for the request, used for cancellation and timeout handling
// - modelName: The name of the model being used for the response (unused in current implementation)
// - rawJSON: The raw JSON response from the Claude Code API
// - param: A pointer to a parameter object for the conversion (unused in current implementation)
//
// Returns:
// - string: An OpenAI-compatible JSON response containing all message content and metadata
func ConvertClaudeResponseToOpenAINonStream(_ context.Context, _ string, originalRequestRawJSON, requestRawJSON, rawJSON []byte, _ *any) string {
chunks := make([][]byte, 0)
lines := bytes.Split(rawJSON, []byte("\n"))
for _, line := range lines {
if !bytes.HasPrefix(line, dataTag) {
continue
}
chunks = append(chunks, bytes.TrimSpace(line[5:]))
}
// Base OpenAI non-streaming response template
out := `{"id":"","object":"chat.completion","created":0,"model":"","choices":[{"index":0,"message":{"role":"assistant","content":""},"finish_reason":"stop"}],"usage":{"prompt_tokens":0,"completion_tokens":0,"total_tokens":0}}`
var messageID string
var model string
var createdAt int64
var inputTokens, outputTokens int64
var reasoningTokens int64
var stopReason string
var contentParts []string
var reasoningParts []string
// Use map to track tool calls by index for proper merging
toolCallsMap := make(map[int]map[string]interface{})
// Track tool call arguments accumulation
toolCallArgsMap := make(map[int]strings.Builder)
for _, chunk := range chunks {
root := gjson.ParseBytes(chunk)
eventType := root.Get("type").String()
switch eventType {
case "message_start":
// Extract initial message metadata including ID, model, and input token count
if message := root.Get("message"); message.Exists() {
messageID = message.Get("id").String()
model = message.Get("model").String()
createdAt = time.Now().Unix()
if usage := message.Get("usage"); usage.Exists() {
inputTokens = usage.Get("input_tokens").Int()
}
}
case "content_block_start":
// Handle different content block types at the beginning
if contentBlock := root.Get("content_block"); contentBlock.Exists() {
blockType := contentBlock.Get("type").String()
if blockType == "thinking" {
// Start of thinking/reasoning content - skip for now as it's handled in delta
continue
} else if blockType == "tool_use" {
// Initialize tool call tracking for this index
index := int(root.Get("index").Int())
toolCallsMap[index] = map[string]interface{}{
"id": contentBlock.Get("id").String(),
"type": "function",
"function": map[string]interface{}{
"name": contentBlock.Get("name").String(),
"arguments": "",
},
}
// Initialize arguments builder for this tool call
toolCallArgsMap[index] = strings.Builder{}
}
}
case "content_block_delta":
// Process incremental content updates
if delta := root.Get("delta"); delta.Exists() {
deltaType := delta.Get("type").String()
switch deltaType {
case "text_delta":
// Accumulate text content
if text := delta.Get("text"); text.Exists() {
contentParts = append(contentParts, text.String())
}
case "thinking_delta":
// Accumulate reasoning/thinking content
if thinking := delta.Get("thinking"); thinking.Exists() {
reasoningParts = append(reasoningParts, thinking.String())
}
case "input_json_delta":
// Accumulate tool call arguments
if partialJSON := delta.Get("partial_json"); partialJSON.Exists() {
index := int(root.Get("index").Int())
if builder, exists := toolCallArgsMap[index]; exists {
builder.WriteString(partialJSON.String())
toolCallArgsMap[index] = builder
}
}
}
}
case "content_block_stop":
// Finalize tool call arguments for this index when content block ends
index := int(root.Get("index").Int())
if toolCall, exists := toolCallsMap[index]; exists {
if builder, argsExists := toolCallArgsMap[index]; argsExists {
// Set the accumulated arguments for the tool call
arguments := builder.String()
if arguments == "" {
arguments = "{}"
}
toolCall["function"].(map[string]interface{})["arguments"] = arguments
}
}
case "message_delta":
// Extract stop reason and output token count when message ends
if delta := root.Get("delta"); delta.Exists() {
if sr := delta.Get("stop_reason"); sr.Exists() {
stopReason = sr.String()
}
}
if usage := root.Get("usage"); usage.Exists() {
outputTokens = usage.Get("output_tokens").Int()
// Estimate reasoning tokens from accumulated thinking content
if len(reasoningParts) > 0 {
reasoningTokens = int64(len(strings.Join(reasoningParts, "")) / 4) // Rough estimation
}
}
}
}
// Set basic response fields including message ID, creation time, and model
out, _ = sjson.Set(out, "id", messageID)
out, _ = sjson.Set(out, "created", createdAt)
out, _ = sjson.Set(out, "model", model)
// Set message content by combining all text parts
messageContent := strings.Join(contentParts, "")
out, _ = sjson.Set(out, "choices.0.message.content", messageContent)
// Add reasoning content if available (following OpenAI reasoning format)
if len(reasoningParts) > 0 {
reasoningContent := strings.Join(reasoningParts, "")
// Add reasoning as a separate field in the message
out, _ = sjson.Set(out, "choices.0.message.reasoning", reasoningContent)
}
// Set tool calls if any were accumulated during processing
if len(toolCallsMap) > 0 {
// Convert tool calls map to array, preserving order by index
var toolCallsArray []interface{}
// Find the maximum index to determine the range
maxIndex := -1
for index := range toolCallsMap {
if index > maxIndex {
maxIndex = index
}
}
// Iterate through all possible indices up to maxIndex
for i := 0; i <= maxIndex; i++ {
if toolCall, exists := toolCallsMap[i]; exists {
toolCallsArray = append(toolCallsArray, toolCall)
}
}
if len(toolCallsArray) > 0 {
out, _ = sjson.Set(out, "choices.0.message.tool_calls", toolCallsArray)
out, _ = sjson.Set(out, "choices.0.finish_reason", "tool_calls")
} else {
out, _ = sjson.Set(out, "choices.0.finish_reason", mapAnthropicStopReasonToOpenAI(stopReason))
}
} else {
out, _ = sjson.Set(out, "choices.0.finish_reason", mapAnthropicStopReasonToOpenAI(stopReason))
}
// Set usage information including prompt tokens, completion tokens, and total tokens
totalTokens := inputTokens + outputTokens
out, _ = sjson.Set(out, "usage.prompt_tokens", inputTokens)
out, _ = sjson.Set(out, "usage.completion_tokens", outputTokens)
out, _ = sjson.Set(out, "usage.total_tokens", totalTokens)
// Add reasoning tokens to usage details if any reasoning content was processed
if reasoningTokens > 0 {
out, _ = sjson.Set(out, "usage.completion_tokens_details.reasoning_tokens", reasoningTokens)
}
return out
}

View File

@@ -0,0 +1,19 @@
package chat_completions
import (
. "github.com/router-for-me/CLIProxyAPI/v6/internal/constant"
"github.com/router-for-me/CLIProxyAPI/v6/internal/interfaces"
"github.com/router-for-me/CLIProxyAPI/v6/internal/translator/translator"
)
func init() {
translator.Register(
OpenAI,
Claude,
ConvertOpenAIRequestToClaude,
interfaces.TranslateResponse{
Stream: ConvertClaudeResponseToOpenAI,
NonStream: ConvertClaudeResponseToOpenAINonStream,
},
)
}