mirror of
https://github.com/router-for-me/CLIProxyAPI.git
synced 2026-02-20 13:20:52 +08:00
Add claude code support
This commit is contained in:
289
internal/translator/claude/openai/claude_openai_request.go
Normal file
289
internal/translator/claude/openai/claude_openai_request.go
Normal file
@@ -0,0 +1,289 @@
|
||||
// Package openai provides request translation functionality for OpenAI to Anthropic API.
|
||||
// It handles parsing and transforming OpenAI Chat Completions API requests into Anthropic API format,
|
||||
// extracting model information, system instructions, message contents, and tool declarations.
|
||||
// The package performs JSON data transformation to ensure compatibility
|
||||
// between OpenAI API format and Anthropic API's expected format.
|
||||
package openai
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"encoding/json"
|
||||
"math/big"
|
||||
"strings"
|
||||
|
||||
"github.com/tidwall/gjson"
|
||||
"github.com/tidwall/sjson"
|
||||
)
|
||||
|
||||
// ConvertOpenAIRequestToAnthropic parses and transforms an OpenAI Chat Completions API request into Anthropic API format.
|
||||
// It extracts the model name, system instruction, message contents, and tool declarations
|
||||
// from the raw JSON request and returns them in the format expected by the Anthropic API.
|
||||
func ConvertOpenAIRequestToAnthropic(rawJSON []byte) string {
|
||||
// Base Anthropic API template
|
||||
out := `{"model":"","max_tokens":32000,"messages":[]}`
|
||||
|
||||
root := gjson.ParseBytes(rawJSON)
|
||||
|
||||
// Helper for generating tool call IDs in the form: toolu_<alphanum>
|
||||
genToolCallID := func() string {
|
||||
const letters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
|
||||
var b strings.Builder
|
||||
// 24 chars random suffix
|
||||
for i := 0; i < 24; i++ {
|
||||
n, _ := rand.Int(rand.Reader, big.NewInt(int64(len(letters))))
|
||||
b.WriteByte(letters[n.Int64()])
|
||||
}
|
||||
return "toolu_" + b.String()
|
||||
}
|
||||
|
||||
// Model mapping
|
||||
if model := root.Get("model"); model.Exists() {
|
||||
modelStr := model.String()
|
||||
out, _ = sjson.Set(out, "model", modelStr)
|
||||
}
|
||||
|
||||
// Max tokens
|
||||
if maxTokens := root.Get("max_tokens"); maxTokens.Exists() {
|
||||
out, _ = sjson.Set(out, "max_tokens", maxTokens.Int())
|
||||
}
|
||||
|
||||
// Temperature
|
||||
if temp := root.Get("temperature"); temp.Exists() {
|
||||
out, _ = sjson.Set(out, "temperature", temp.Float())
|
||||
}
|
||||
|
||||
// Top P
|
||||
if topP := root.Get("top_p"); topP.Exists() {
|
||||
out, _ = sjson.Set(out, "top_p", topP.Float())
|
||||
}
|
||||
|
||||
// Stop sequences
|
||||
if stop := root.Get("stop"); stop.Exists() {
|
||||
if stop.IsArray() {
|
||||
var stopSequences []string
|
||||
stop.ForEach(func(_, value gjson.Result) bool {
|
||||
stopSequences = append(stopSequences, value.String())
|
||||
return true
|
||||
})
|
||||
if len(stopSequences) > 0 {
|
||||
out, _ = sjson.Set(out, "stop_sequences", stopSequences)
|
||||
}
|
||||
} else {
|
||||
out, _ = sjson.Set(out, "stop_sequences", []string{stop.String()})
|
||||
}
|
||||
}
|
||||
|
||||
// Stream
|
||||
if stream := root.Get("stream"); stream.Exists() {
|
||||
out, _ = sjson.Set(out, "stream", stream.Bool())
|
||||
}
|
||||
|
||||
// Process messages
|
||||
var anthropicMessages []interface{}
|
||||
var toolCallIDs []string // Track tool call IDs for matching with tool results
|
||||
|
||||
if messages := root.Get("messages"); messages.Exists() && messages.IsArray() {
|
||||
messages.ForEach(func(_, message gjson.Result) bool {
|
||||
role := message.Get("role").String()
|
||||
contentResult := message.Get("content")
|
||||
|
||||
switch role {
|
||||
case "system", "user", "assistant":
|
||||
// Create Anthropic message
|
||||
if role == "system" {
|
||||
role = "user"
|
||||
}
|
||||
|
||||
msg := map[string]interface{}{
|
||||
"role": role,
|
||||
"content": []interface{}{},
|
||||
}
|
||||
|
||||
// Handle content
|
||||
if contentResult.Exists() && contentResult.Type == gjson.String && contentResult.String() != "" {
|
||||
// Simple text content
|
||||
msg["content"] = []interface{}{
|
||||
map[string]interface{}{
|
||||
"type": "text",
|
||||
"text": contentResult.String(),
|
||||
},
|
||||
}
|
||||
} else if contentResult.Exists() && contentResult.IsArray() {
|
||||
// Array of content parts
|
||||
var contentParts []interface{}
|
||||
contentResult.ForEach(func(_, part gjson.Result) bool {
|
||||
partType := part.Get("type").String()
|
||||
|
||||
switch partType {
|
||||
case "text":
|
||||
contentParts = append(contentParts, map[string]interface{}{
|
||||
"type": "text",
|
||||
"text": part.Get("text").String(),
|
||||
})
|
||||
|
||||
case "image_url":
|
||||
// Convert OpenAI image format to Anthropic format
|
||||
imageURL := part.Get("image_url.url").String()
|
||||
if strings.HasPrefix(imageURL, "data:") {
|
||||
// Extract base64 data and media type
|
||||
parts := strings.Split(imageURL, ",")
|
||||
if len(parts) == 2 {
|
||||
mediaTypePart := strings.Split(parts[0], ";")[0]
|
||||
mediaType := strings.TrimPrefix(mediaTypePart, "data:")
|
||||
data := parts[1]
|
||||
|
||||
contentParts = append(contentParts, map[string]interface{}{
|
||||
"type": "image",
|
||||
"source": map[string]interface{}{
|
||||
"type": "base64",
|
||||
"media_type": mediaType,
|
||||
"data": data,
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
return true
|
||||
})
|
||||
if len(contentParts) > 0 {
|
||||
msg["content"] = contentParts
|
||||
}
|
||||
} else {
|
||||
// Initialize empty content array for tool calls
|
||||
msg["content"] = []interface{}{}
|
||||
}
|
||||
|
||||
// Handle tool calls (for assistant messages)
|
||||
if toolCalls := message.Get("tool_calls"); toolCalls.Exists() && toolCalls.IsArray() && role == "assistant" {
|
||||
var contentParts []interface{}
|
||||
|
||||
// Add existing text content if any
|
||||
if existingContent, ok := msg["content"].([]interface{}); ok {
|
||||
contentParts = existingContent
|
||||
}
|
||||
|
||||
toolCalls.ForEach(func(_, toolCall gjson.Result) bool {
|
||||
if toolCall.Get("type").String() == "function" {
|
||||
toolCallID := toolCall.Get("id").String()
|
||||
if toolCallID == "" {
|
||||
toolCallID = genToolCallID()
|
||||
}
|
||||
toolCallIDs = append(toolCallIDs, toolCallID)
|
||||
|
||||
function := toolCall.Get("function")
|
||||
toolUse := map[string]interface{}{
|
||||
"type": "tool_use",
|
||||
"id": toolCallID,
|
||||
"name": function.Get("name").String(),
|
||||
}
|
||||
|
||||
// Parse arguments
|
||||
if args := function.Get("arguments"); args.Exists() {
|
||||
argsStr := args.String()
|
||||
if argsStr != "" {
|
||||
var argsMap map[string]interface{}
|
||||
if err := json.Unmarshal([]byte(argsStr), &argsMap); err == nil {
|
||||
toolUse["input"] = argsMap
|
||||
} else {
|
||||
toolUse["input"] = map[string]interface{}{}
|
||||
}
|
||||
} else {
|
||||
toolUse["input"] = map[string]interface{}{}
|
||||
}
|
||||
} else {
|
||||
toolUse["input"] = map[string]interface{}{}
|
||||
}
|
||||
|
||||
contentParts = append(contentParts, toolUse)
|
||||
}
|
||||
return true
|
||||
})
|
||||
msg["content"] = contentParts
|
||||
}
|
||||
|
||||
anthropicMessages = append(anthropicMessages, msg)
|
||||
|
||||
case "tool":
|
||||
// Handle tool result messages
|
||||
toolCallID := message.Get("tool_call_id").String()
|
||||
content := message.Get("content").String()
|
||||
|
||||
// Create tool result message
|
||||
msg := map[string]interface{}{
|
||||
"role": "user",
|
||||
"content": []interface{}{
|
||||
map[string]interface{}{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": toolCallID,
|
||||
"content": content,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
anthropicMessages = append(anthropicMessages, msg)
|
||||
}
|
||||
return true
|
||||
})
|
||||
}
|
||||
|
||||
// Set messages
|
||||
if len(anthropicMessages) > 0 {
|
||||
messagesJSON, _ := json.Marshal(anthropicMessages)
|
||||
out, _ = sjson.SetRaw(out, "messages", string(messagesJSON))
|
||||
}
|
||||
|
||||
// Tools mapping: OpenAI tools -> Anthropic tools
|
||||
if tools := root.Get("tools"); tools.Exists() && tools.IsArray() {
|
||||
var anthropicTools []interface{}
|
||||
tools.ForEach(func(_, tool gjson.Result) bool {
|
||||
if tool.Get("type").String() == "function" {
|
||||
function := tool.Get("function")
|
||||
anthropicTool := map[string]interface{}{
|
||||
"name": function.Get("name").String(),
|
||||
"description": function.Get("description").String(),
|
||||
}
|
||||
|
||||
// Convert parameters schema
|
||||
if parameters := function.Get("parameters"); parameters.Exists() {
|
||||
anthropicTool["input_schema"] = parameters.Value()
|
||||
}
|
||||
|
||||
anthropicTools = append(anthropicTools, anthropicTool)
|
||||
}
|
||||
return true
|
||||
})
|
||||
|
||||
if len(anthropicTools) > 0 {
|
||||
toolsJSON, _ := json.Marshal(anthropicTools)
|
||||
out, _ = sjson.SetRaw(out, "tools", string(toolsJSON))
|
||||
}
|
||||
}
|
||||
|
||||
// Tool choice mapping
|
||||
if toolChoice := root.Get("tool_choice"); toolChoice.Exists() {
|
||||
switch toolChoice.Type {
|
||||
case gjson.String:
|
||||
choice := toolChoice.String()
|
||||
switch choice {
|
||||
case "none":
|
||||
// Don't set tool_choice, Anthropic will not use tools
|
||||
case "auto":
|
||||
out, _ = sjson.Set(out, "tool_choice", map[string]interface{}{"type": "auto"})
|
||||
case "required":
|
||||
out, _ = sjson.Set(out, "tool_choice", map[string]interface{}{"type": "any"})
|
||||
}
|
||||
case gjson.JSON:
|
||||
// Specific tool choice
|
||||
if toolChoice.Get("type").String() == "function" {
|
||||
functionName := toolChoice.Get("function.name").String()
|
||||
out, _ = sjson.Set(out, "tool_choice", map[string]interface{}{
|
||||
"type": "tool",
|
||||
"name": functionName,
|
||||
})
|
||||
}
|
||||
default:
|
||||
}
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
395
internal/translator/claude/openai/claude_openai_response.go
Normal file
395
internal/translator/claude/openai/claude_openai_response.go
Normal file
@@ -0,0 +1,395 @@
|
||||
// Package openai provides response translation functionality for Anthropic to OpenAI API.
|
||||
// This package handles the conversion of Anthropic API responses into OpenAI Chat Completions-compatible
|
||||
// JSON format, transforming streaming events and non-streaming responses into the format
|
||||
// expected by OpenAI API clients. It supports both streaming and non-streaming modes,
|
||||
// handling text content, tool calls, and usage metadata appropriately.
|
||||
package openai
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/tidwall/gjson"
|
||||
"github.com/tidwall/sjson"
|
||||
)
|
||||
|
||||
// ConvertAnthropicResponseToOpenAIParams holds parameters for response conversion
|
||||
type ConvertAnthropicResponseToOpenAIParams struct {
|
||||
CreatedAt int64
|
||||
ResponseID string
|
||||
FinishReason string
|
||||
// Tool calls accumulator for streaming
|
||||
ToolCallsAccumulator map[int]*ToolCallAccumulator
|
||||
}
|
||||
|
||||
// ToolCallAccumulator holds the state for accumulating tool call data
|
||||
type ToolCallAccumulator struct {
|
||||
ID string
|
||||
Name string
|
||||
Arguments strings.Builder
|
||||
}
|
||||
|
||||
// ConvertAnthropicResponseToOpenAI converts Anthropic streaming response format to OpenAI Chat Completions format.
|
||||
// This function processes various Anthropic event types and transforms them into OpenAI-compatible JSON responses.
|
||||
// It handles text content, tool calls, and usage metadata, outputting responses that match the OpenAI API format.
|
||||
func ConvertAnthropicResponseToOpenAI(rawJSON []byte, param *ConvertAnthropicResponseToOpenAIParams) []string {
|
||||
root := gjson.ParseBytes(rawJSON)
|
||||
eventType := root.Get("type").String()
|
||||
|
||||
// Base OpenAI streaming response template
|
||||
template := `{"id":"","object":"chat.completion.chunk","created":0,"model":"","choices":[{"index":0,"delta":{},"finish_reason":null}]}`
|
||||
|
||||
// Set model
|
||||
modelResult := gjson.GetBytes(rawJSON, "model")
|
||||
modelName := modelResult.String()
|
||||
if modelName != "" {
|
||||
template, _ = sjson.Set(template, "model", modelName)
|
||||
}
|
||||
|
||||
// Set response ID and creation time
|
||||
if param.ResponseID != "" {
|
||||
template, _ = sjson.Set(template, "id", param.ResponseID)
|
||||
}
|
||||
if param.CreatedAt > 0 {
|
||||
template, _ = sjson.Set(template, "created", param.CreatedAt)
|
||||
}
|
||||
|
||||
switch eventType {
|
||||
case "message_start":
|
||||
// Initialize response with message metadata
|
||||
if message := root.Get("message"); message.Exists() {
|
||||
param.ResponseID = message.Get("id").String()
|
||||
param.CreatedAt = time.Now().Unix()
|
||||
|
||||
template, _ = sjson.Set(template, "id", param.ResponseID)
|
||||
template, _ = sjson.Set(template, "model", modelName)
|
||||
template, _ = sjson.Set(template, "created", param.CreatedAt)
|
||||
|
||||
// Set initial role
|
||||
template, _ = sjson.Set(template, "choices.0.delta.role", "assistant")
|
||||
|
||||
// Initialize tool calls accumulator
|
||||
if param.ToolCallsAccumulator == nil {
|
||||
param.ToolCallsAccumulator = make(map[int]*ToolCallAccumulator)
|
||||
}
|
||||
}
|
||||
return []string{template}
|
||||
|
||||
case "content_block_start":
|
||||
// Start of a content block
|
||||
if contentBlock := root.Get("content_block"); contentBlock.Exists() {
|
||||
blockType := contentBlock.Get("type").String()
|
||||
|
||||
if blockType == "tool_use" {
|
||||
// Start of tool call - initialize accumulator
|
||||
toolCallID := contentBlock.Get("id").String()
|
||||
toolName := contentBlock.Get("name").String()
|
||||
index := int(root.Get("index").Int())
|
||||
|
||||
if param.ToolCallsAccumulator == nil {
|
||||
param.ToolCallsAccumulator = make(map[int]*ToolCallAccumulator)
|
||||
}
|
||||
|
||||
param.ToolCallsAccumulator[index] = &ToolCallAccumulator{
|
||||
ID: toolCallID,
|
||||
Name: toolName,
|
||||
}
|
||||
|
||||
// Don't output anything yet - wait for complete tool call
|
||||
return []string{}
|
||||
}
|
||||
}
|
||||
return []string{template}
|
||||
|
||||
case "content_block_delta":
|
||||
// Handle content delta (text or tool use)
|
||||
if delta := root.Get("delta"); delta.Exists() {
|
||||
deltaType := delta.Get("type").String()
|
||||
|
||||
switch deltaType {
|
||||
case "text_delta":
|
||||
// Text content delta
|
||||
if text := delta.Get("text"); text.Exists() {
|
||||
template, _ = sjson.Set(template, "choices.0.delta.content", text.String())
|
||||
}
|
||||
|
||||
case "input_json_delta":
|
||||
// Tool use input delta - accumulate arguments
|
||||
if partialJSON := delta.Get("partial_json"); partialJSON.Exists() {
|
||||
index := int(root.Get("index").Int())
|
||||
if param.ToolCallsAccumulator != nil {
|
||||
if accumulator, exists := param.ToolCallsAccumulator[index]; exists {
|
||||
accumulator.Arguments.WriteString(partialJSON.String())
|
||||
}
|
||||
}
|
||||
}
|
||||
// Don't output anything yet - wait for complete tool call
|
||||
return []string{}
|
||||
}
|
||||
}
|
||||
return []string{template}
|
||||
|
||||
case "content_block_stop":
|
||||
// End of content block - output complete tool call if it's a tool_use block
|
||||
index := int(root.Get("index").Int())
|
||||
if param.ToolCallsAccumulator != nil {
|
||||
if accumulator, exists := param.ToolCallsAccumulator[index]; exists {
|
||||
// Build complete tool call
|
||||
arguments := accumulator.Arguments.String()
|
||||
if arguments == "" {
|
||||
arguments = "{}"
|
||||
}
|
||||
|
||||
toolCall := map[string]interface{}{
|
||||
"index": index,
|
||||
"id": accumulator.ID,
|
||||
"type": "function",
|
||||
"function": map[string]interface{}{
|
||||
"name": accumulator.Name,
|
||||
"arguments": arguments,
|
||||
},
|
||||
}
|
||||
|
||||
template, _ = sjson.Set(template, "choices.0.delta.tool_calls", []interface{}{toolCall})
|
||||
|
||||
// Clean up the accumulator for this index
|
||||
delete(param.ToolCallsAccumulator, index)
|
||||
|
||||
return []string{template}
|
||||
}
|
||||
}
|
||||
return []string{}
|
||||
|
||||
case "message_delta":
|
||||
// Handle message-level changes
|
||||
if delta := root.Get("delta"); delta.Exists() {
|
||||
if stopReason := delta.Get("stop_reason"); stopReason.Exists() {
|
||||
param.FinishReason = mapAnthropicStopReasonToOpenAI(stopReason.String())
|
||||
template, _ = sjson.Set(template, "choices.0.finish_reason", param.FinishReason)
|
||||
}
|
||||
}
|
||||
|
||||
// Handle usage information
|
||||
if usage := root.Get("usage"); usage.Exists() {
|
||||
usageObj := map[string]interface{}{
|
||||
"prompt_tokens": usage.Get("input_tokens").Int(),
|
||||
"completion_tokens": usage.Get("output_tokens").Int(),
|
||||
"total_tokens": usage.Get("input_tokens").Int() + usage.Get("output_tokens").Int(),
|
||||
}
|
||||
template, _ = sjson.Set(template, "usage", usageObj)
|
||||
}
|
||||
return []string{template}
|
||||
|
||||
case "message_stop":
|
||||
// Final message - send [DONE]
|
||||
return []string{"[DONE]\n"}
|
||||
|
||||
case "ping":
|
||||
// Ping events - ignore
|
||||
return []string{}
|
||||
|
||||
case "error":
|
||||
// Error event
|
||||
if errorData := root.Get("error"); errorData.Exists() {
|
||||
errorResponse := map[string]interface{}{
|
||||
"error": map[string]interface{}{
|
||||
"message": errorData.Get("message").String(),
|
||||
"type": errorData.Get("type").String(),
|
||||
},
|
||||
}
|
||||
errorJSON, _ := json.Marshal(errorResponse)
|
||||
return []string{string(errorJSON)}
|
||||
}
|
||||
return []string{}
|
||||
|
||||
default:
|
||||
// Unknown event type - ignore
|
||||
return []string{}
|
||||
}
|
||||
}
|
||||
|
||||
// mapAnthropicStopReasonToOpenAI maps Anthropic stop reasons to OpenAI stop reasons
|
||||
func mapAnthropicStopReasonToOpenAI(anthropicReason string) string {
|
||||
switch anthropicReason {
|
||||
case "end_turn":
|
||||
return "stop"
|
||||
case "tool_use":
|
||||
return "tool_calls"
|
||||
case "max_tokens":
|
||||
return "length"
|
||||
case "stop_sequence":
|
||||
return "stop"
|
||||
default:
|
||||
return "stop"
|
||||
}
|
||||
}
|
||||
|
||||
// ConvertAnthropicStreamingResponseToOpenAINonStream aggregates streaming chunks into a single non-streaming response
|
||||
// following OpenAI Chat Completions API format with reasoning content support
|
||||
func ConvertAnthropicStreamingResponseToOpenAINonStream(chunks [][]byte) string {
|
||||
// Base OpenAI non-streaming response template
|
||||
out := `{"id":"","object":"chat.completion","created":0,"model":"","choices":[{"index":0,"message":{"role":"assistant","content":""},"finish_reason":"stop"}],"usage":{"prompt_tokens":0,"completion_tokens":0,"total_tokens":0}}`
|
||||
|
||||
var messageID string
|
||||
var model string
|
||||
var createdAt int64
|
||||
var inputTokens, outputTokens int64
|
||||
var reasoningTokens int64
|
||||
var stopReason string
|
||||
var contentParts []string
|
||||
var reasoningParts []string
|
||||
// Use map to track tool calls by index for proper merging
|
||||
toolCallsMap := make(map[int]map[string]interface{})
|
||||
// Track tool call arguments accumulation
|
||||
toolCallArgsMap := make(map[int]strings.Builder)
|
||||
|
||||
for _, chunk := range chunks {
|
||||
root := gjson.ParseBytes(chunk)
|
||||
eventType := root.Get("type").String()
|
||||
|
||||
switch eventType {
|
||||
case "message_start":
|
||||
if message := root.Get("message"); message.Exists() {
|
||||
messageID = message.Get("id").String()
|
||||
model = message.Get("model").String()
|
||||
createdAt = time.Now().Unix()
|
||||
if usage := message.Get("usage"); usage.Exists() {
|
||||
inputTokens = usage.Get("input_tokens").Int()
|
||||
}
|
||||
}
|
||||
|
||||
case "content_block_start":
|
||||
// Handle different content block types
|
||||
if contentBlock := root.Get("content_block"); contentBlock.Exists() {
|
||||
blockType := contentBlock.Get("type").String()
|
||||
if blockType == "thinking" {
|
||||
// Start of thinking/reasoning content
|
||||
continue
|
||||
} else if blockType == "tool_use" {
|
||||
// Initialize tool call tracking
|
||||
index := int(root.Get("index").Int())
|
||||
toolCallsMap[index] = map[string]interface{}{
|
||||
"id": contentBlock.Get("id").String(),
|
||||
"type": "function",
|
||||
"function": map[string]interface{}{
|
||||
"name": contentBlock.Get("name").String(),
|
||||
"arguments": "",
|
||||
},
|
||||
}
|
||||
// Initialize arguments builder for this tool call
|
||||
toolCallArgsMap[index] = strings.Builder{}
|
||||
}
|
||||
}
|
||||
|
||||
case "content_block_delta":
|
||||
if delta := root.Get("delta"); delta.Exists() {
|
||||
deltaType := delta.Get("type").String()
|
||||
switch deltaType {
|
||||
case "text_delta":
|
||||
if text := delta.Get("text"); text.Exists() {
|
||||
contentParts = append(contentParts, text.String())
|
||||
}
|
||||
case "thinking_delta":
|
||||
// Anthropic thinking content -> OpenAI reasoning content
|
||||
if thinking := delta.Get("thinking"); thinking.Exists() {
|
||||
reasoningParts = append(reasoningParts, thinking.String())
|
||||
}
|
||||
case "input_json_delta":
|
||||
// Accumulate tool call arguments
|
||||
if partialJSON := delta.Get("partial_json"); partialJSON.Exists() {
|
||||
index := int(root.Get("index").Int())
|
||||
if builder, exists := toolCallArgsMap[index]; exists {
|
||||
builder.WriteString(partialJSON.String())
|
||||
toolCallArgsMap[index] = builder
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
case "content_block_stop":
|
||||
// Finalize tool call arguments for this index
|
||||
index := int(root.Get("index").Int())
|
||||
if toolCall, exists := toolCallsMap[index]; exists {
|
||||
if builder, argsExists := toolCallArgsMap[index]; argsExists {
|
||||
// Set the accumulated arguments
|
||||
arguments := builder.String()
|
||||
if arguments == "" {
|
||||
arguments = "{}"
|
||||
}
|
||||
toolCall["function"].(map[string]interface{})["arguments"] = arguments
|
||||
}
|
||||
}
|
||||
|
||||
case "message_delta":
|
||||
if delta := root.Get("delta"); delta.Exists() {
|
||||
if sr := delta.Get("stop_reason"); sr.Exists() {
|
||||
stopReason = sr.String()
|
||||
}
|
||||
}
|
||||
if usage := root.Get("usage"); usage.Exists() {
|
||||
outputTokens = usage.Get("output_tokens").Int()
|
||||
// Estimate reasoning tokens from thinking content
|
||||
if len(reasoningParts) > 0 {
|
||||
reasoningTokens = int64(len(strings.Join(reasoningParts, "")) / 4) // Rough estimation
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Set basic response fields
|
||||
out, _ = sjson.Set(out, "id", messageID)
|
||||
out, _ = sjson.Set(out, "created", createdAt)
|
||||
out, _ = sjson.Set(out, "model", model)
|
||||
|
||||
// Set message content
|
||||
messageContent := strings.Join(contentParts, "")
|
||||
out, _ = sjson.Set(out, "choices.0.message.content", messageContent)
|
||||
|
||||
// Add reasoning content if available (following OpenAI reasoning format)
|
||||
if len(reasoningParts) > 0 {
|
||||
reasoningContent := strings.Join(reasoningParts, "")
|
||||
// Add reasoning as a separate field in the message
|
||||
out, _ = sjson.Set(out, "choices.0.message.reasoning", reasoningContent)
|
||||
}
|
||||
|
||||
// Set tool calls if any
|
||||
if len(toolCallsMap) > 0 {
|
||||
// Convert tool calls map to array, preserving order by index
|
||||
var toolCallsArray []interface{}
|
||||
// Find the maximum index to determine the range
|
||||
maxIndex := -1
|
||||
for index := range toolCallsMap {
|
||||
if index > maxIndex {
|
||||
maxIndex = index
|
||||
}
|
||||
}
|
||||
// Iterate through all possible indices up to maxIndex
|
||||
for i := 0; i <= maxIndex; i++ {
|
||||
if toolCall, exists := toolCallsMap[i]; exists {
|
||||
toolCallsArray = append(toolCallsArray, toolCall)
|
||||
}
|
||||
}
|
||||
if len(toolCallsArray) > 0 {
|
||||
out, _ = sjson.Set(out, "choices.0.message.tool_calls", toolCallsArray)
|
||||
out, _ = sjson.Set(out, "choices.0.finish_reason", "tool_calls")
|
||||
} else {
|
||||
out, _ = sjson.Set(out, "choices.0.finish_reason", mapAnthropicStopReasonToOpenAI(stopReason))
|
||||
}
|
||||
} else {
|
||||
out, _ = sjson.Set(out, "choices.0.finish_reason", mapAnthropicStopReasonToOpenAI(stopReason))
|
||||
}
|
||||
|
||||
// Set usage information
|
||||
totalTokens := inputTokens + outputTokens
|
||||
out, _ = sjson.Set(out, "usage.prompt_tokens", inputTokens)
|
||||
out, _ = sjson.Set(out, "usage.completion_tokens", outputTokens)
|
||||
out, _ = sjson.Set(out, "usage.total_tokens", totalTokens)
|
||||
|
||||
// Add reasoning tokens to usage details if available
|
||||
if reasoningTokens > 0 {
|
||||
out, _ = sjson.Set(out, "usage.completion_tokens_details.reasoning_tokens", reasoningTokens)
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
Reference in New Issue
Block a user